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1. Introduction

The AdS/CFT correspondence [1] has proven to be a remarkably useful tool for studying

N = 4 SYM at strong coupling. However, this is only the most well-known example of

gauge/gravity duality. Lin and Maldacena [2], building on the work of [3], have found an-

other very interesting class of dualities. This class relates SU(2|4) supersymmetric gauge

theories (the plane wave matrix model, and maximally supersymmetric Yang-Mills theories

on R × S2 and R × S3/Zk) to type IIA string theory in various backgrounds. The metric,

dilaton, and form fields in the supergravity solutions in question can be expressed in terms

of a single function that is an axisymmetric solution of the Laplace equation in three dimen-

sions. The gravity solutions, therefore, are specified by axisymmetric electrostatics config-

urations. The field theories in question have many vacua, and Lin and Maldacena [2] were

able to determine the correspondence between the vacua and the supergravity solutions.

These present interesting examples of the gauge/gravity correspondence as field theories

living in different numbers of dimensions are dual to string theory in backgrounds that

share similar features in the infrared region, such as throats with NS5- or D2-brane flux.

The electrostatics configurations corresponding to the field theory vacua are given by

different arrangements of charged conducting disks [2]. For a general vacuum on the field

theory side, and therefore a general disk configuration on the gravity side, solving the

electrostatics problem is quite challenging, and explicit solutions are known in only some

special cases.

One particular solution given by Lin and Maldacena [2] corresponds to two infinitely

large disks held at fixed separation. They gave an explicit form for the gravity solution and

argued that it should be dual to little string theory on S5. The gravity dual was used in [4]

to argue that little string theory on S5 has interesting features that differ from the theory
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in flat space. An explicit solution has also been given in the case of a single isolated disk,

dual to a vacuum of the maximally supersymmetric Yang-Mills theory on R × S2 [2, 5].

Also, in the region very close to the tip of a disk, the problem becomes two dimensional,

and it is possible to solve it by conformal mapping [2]. More general explicit solutions,

however, are not known.

In general this has prevented this set of dualities from being used to study the SU(2|4)
symmetric field theories at strong coupling. It is interesting to consider what questions can

be addressed from the information we do know on the gravity side. Recently, Lin [6] has

made some progress in applying this correspondence to instanton calculations in the plane

wave matrix model and maximally supersymmetric Yang-Mills theory on R × S2. In the

case of the matrix model, this question had been studied directly in the field theory [7].

Lin gave explicit results for weak coupling from the supergravity side, and found precise

agreement with the gauge theory analysis.

It would certainly be desirable to be able to perform other gauge theory calculations

using the dual gravity description. It is, therefore, quite interesting to obtain more general

supergravity solutions that would allow this to be done.

In this paper we will demonstrate that it is possible to reduce the generic electrostatics

problem to a simple linear system that can be solved very simply using numerical meth-

ods. We will then use this technique to find some explicit results using Lin’s prescription

for instanton calculations on the dual gravity side. For a simple example electrostatics

configuration, dual to a vacuum of the plane wave matrix model, we will give an explicit

expression for the superpotential at strong coupling, and also the leading correction to

Lin’s result at weak coupling.

2. Supergravity solutions

In this section we will review the Lin-Maldacena formulation of supergravity solutions in

terms of electrostatics problems; full details can be found in [2]. Then in subsections 2.1

and 2.2 we will discuss the solution of these problems.

To find the supergravity duals to field theories with SU(2|4) symmetry, Lin and Mal-

dacena looked for similarly symmetric supergravity solutions. In particular, the bosonic

part of this symmetry group is R × SO(3) × SO(6) so the supergravity solutions should

contain an S2 and an S5. Interestingly, with this restriction all of the supergravity fields

can be expressed in terms of a single function of the two remaining coordinates. For the

supergravity equations to be satisfied, this function must be an axisymmetric solution to

the Laplace equation in three dimensions.

The full supergravity solution in terms of this function, in the string frame, is

ds2 =

(

V̈ − 2V̇

−V ′′

)1/2 (

− 4V̈

V̈ − 2V̇
dt2 +

−2V ′′

V̇
(dr2 + dz2) + 4dΩ2

5 + 2
V ′′V̇

∆
dΩ2

2

)

e4Φ =
4(V̈ − 2V̇ )3

−V ′′V̇ 2∆2
, F4 = dC3, H3 = dB2 ,
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Figure 1: An example electrostatics configuration. The conducting disks are the horizontal solid

lines. Fibred above the rz-plane are an S2 and an S5. The size of the S2 shrinks on the disks,

whereas the S5 shrinks on the z axis. The dashed lines indicate topological 3- and 6-cycles in the

geometry.

C1 = − 2V̇ ′ V̇

V̈ − 2V̇
dt, C3 = −4

V̇ 2V ′′

∆
dt ∧ d2Ω , B2 = 2

(

V̇ V̇ ′

∆
+ z

)

d2Ω ,

∆ ≡ (V̈ − 2V̇ )V ′′ − (V̇ ′)2,

(2.1)

where V is the electrostatics potential, and dots and primes indicate derivatives with

respect to log r and z, respectively. To avoid conical singularities in (2.1), when the size

of the S2 or S5 shrinks, requires that either V is regular at r = 0 (S5 shrinks) or ∂rV = 0

(S2 shrinks). Different supergravity solutions can, therefore, be specified by inserting some

conducting disks of various radii Ri at positions zi. See figure 1. Inserting a disk will create

separate two regions on the z-axis on which the S5 shrinks and will therefore mean adding

a non contractible 6-cycle, which will carry NS5-brane flux. Similarly, the region between

two disks, on which the S2 shrinks, will be a non-contractible 3-cycle carrying D2-brane

flux.

Two additional constraints on the electrostatics solution come from ensuring that all

of the metric components are positive definite and that the transformation to these coor-

dinates is well defined. Positive definiteness requires that the electrostatics potential takes

a definite asymptotic form, and the coordinate transformation requires that the charge

density vanishes at the edge of each disk.

We will now describe a method for solving the electrostatics problems for generic

configurations.

2.1 General solutions dual to SYM on R × S2

One of the field theories for which Lin and Maldacena found the corresponding electrostatics

configurations is maximally supersymmetric SU(N) Yang-Mills theory on R × S2. This

theory is related to N = 4 SYM on R × S3 by dimensionally reducing that theory on
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the Hopf fibre of S3 [2]. The field content is similar to N = 4, however the theory on

R × S2 admits vacuum configurations with non-trivial Φ, the scalar field resulting from

the dimensional reduction. The vacua of this theory are parametrized by a set of integers

where Φ = diag(n1, n2, . . . , nN ) [8]. General discussion of the relations among the vacua

in the SU(2|4) symmetric field theories can be found in [9, 10].

The set of electrostatics configurations in question are given by an arbitrary set of pos-

itively charged conducting disks. Each disk will be associated with some D2 brane charge,

so it is natural to think of the supergravity solutions as being dual to vacua of maximally

supersymmetric Yang-Mills on R× S2 [2]. The integers in the vacuum configuration for Φ

are related to positions of the disks by z = nπ/2, and the number of units of charge on the

disk is related to the number of times that each integer appears by Q = π2N/8 [2].

The solutions to these electrostatics problems have been given in some specific cases [2,

5, 11]. For example the limit that the disks are very large, or only the geometry near the

tip of a disk is of interest, the problem becomes two dimensional and it is possible to

treat it with conformal mapping [2, 5, 6, 11]. In the case that there is a single disk it is

possible to find an exact solution [2, 5]. For two equally sized disks a formal solution can

be found [5, 11]. We will show that the techniques of [5, 11, 12] to solve the electrostatics

problem for two identical disks can be extended to more arbitrary disk configurations. We

will discuss how these more general solutions may be found using these techniques.

Consider the case of a collection of k charged conducting disks in the case of maximally

supersymmetric Yang-Mills theory on R × S2. This problem is similar to the one for two

disks considered in [11], however we will allow the disks here to sit at arbitrary positions,

di and have arbitrary sizes, Ri. We can take the potential to be

V = W0

(

r2 − 2z2 +
∑

i

φi(r, z)

)

, (2.2)

where the first two terms ensure the correct asymptotic conditions, and the third is an

asymptotically vanishing contribution that comes from the charges on the disks. It takes

the form

φi(r, z) =

∫ ∞

0

du

u
J0(ru)Ai(u)e−u|z−di| . (2.3)

Each function Ai will be shown to determine the charge density on the ith disk. To fix

the form of these functions we impose the conducting boundary conditions on the disks.

In particular, if the disks are held at fixed potentials ∆i, then we will find a set of dual

integral equations similar in form to those in [5, 11, 12]. The conditions at the ith disk are

that for r < Ri

∫ ∞

0

du

u
J0(ur)



Ai(u) +
∑

j 6=i

Aj(u)e−u|dj−di|



 = ∆i + 2d2
i − r2 , (2.4)

and for r > Ri
∫ ∞

0
duJ0(ur)Ai(u) = 0 . (2.5)
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We can make the ansatz

Ai(u) =
2u

π

∫ Ri

0
dt cos(ut)fi(t) , (2.6)

so that the conditions in (2.5) are automatically satisfied, and the conditions (2.4) become

fi(r) +
∑

j 6=i

∫ Rj

0
dx K̄ij(x, r)fj(x) = gi(r) , (2.7)

where

K̄ij(x, r) =
|di − dj |

π

[

1

(x + r)2 + |di − dj |2
+

1

(x − r)2 + |di − dj |2
]

, (2.8)

gi(r) = βi − 2r2, and βi = ∆i + 2d2
i . Since the gi are all symmetric functions, it is simpler

to take the system as

fi(r) +
∑

j 6=i

∫ Rj

−Rj

dxKij(x, r)fj(x) = gi(r) , (2.9)

where

Kij(x, r) =
1

π

|di − dj |
(x − r)2 + |di − dj |2

. (2.10)

It is straightforward to show that the charge densities on the disks are given in terms of

the fi as

σi(r) =
W0

π2





fi(Ri)
√

R2
i − r2

−
∫ Ri

r
du

f ′
i(u)√

u2 − r2



 , (2.11)

and that the total charges are

Qi =
W0

π

∫ Ri

−Ri

du fi(u) . (2.12)

To find the fi we must solve the set of linear equations in (2.9), schematically this takes

the form






1 K12 · · ·
K21 1 · · ·

...
...

. . .













f1

f2
...






=







β1 − 2r2

β2 − 2r2

...






. (2.13)

Due to the complicated form of the kernels Kij this system is not easy to solve analytically,

however, it is straightforward to solve it numerically using the Nyström method (see,

e.g. [13]). This consists of discretizing the interval and solving the resulting linear system.

An additional set of constraints comes from ensuring that the charge densities vanish at

the edges of the disks. This amounts to enforcing that fi(Ri) = 0. We define f
(j)
i as the

set of solutions to (2.9) with gi(r) = δj
i , where if there are N disks j = 1, . . . , N , and f

(0)
i

as the set with gi(r) = 2r2. The condition that the charge density vanishes at the edge of

the disk is then that
∑

j

f
(j)
i (Ri)βj = f

(0)
i (Ri) . (2.14)
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There will be a unique solution for βi if det(f
(j)
i (Ri)) 6= 0. The full solution fi is then

fi(r) = −f
(0)
i (r) +

∑

j

βjf
(j)
i (r) , (2.15)

with the potentials φi given by

φi =

∫ Ri

−Ri

dt Gi(r, z, t)fi(t) , (2.16)

where

Gi(r, z, t) =
1

π

1
√

(|z − di| + it)2 + r2
. (2.17)

We have therefore reduced the electrostatics problem to a very simple linear system.

In the case that there are only two disks, the problem is very straightforward and solution

has been used to understand the relationship between SYM on R × S2 and little string

theory [11].

2.2 General solutions dual to the PWMM

Another theory for which Lin and Maldacena found the corresponding electrostatics config-

urations is the plane wave matrix model [14]. The plane wave matrix model can be found

by a consistent truncation of N = 4 SYM on R × S3 to the set of constant modes on the

sphere [15]. The vacua of matrix model are given by the scalars that come from the former

N = 4 gauge field taking values in a representation of SU(2) [14]. Lin and Maldacena [2]

associated these vacua with configurations of charged conducting disks above an infinite

conducting plane.

The method of solution is very similar to the case above. For the sake of brevity we

will give the final solution. We will write the potential as

V = V0

(

r2z − 2

3
z3 +

∑

i

φi(r, z)

)

, (2.18)

where the first two terms are the background field and the φi arise from the charged disks

as

φi(r, z) =

∫ Ri

−Ri

dt Gi(r, z, t)fi(t) . (2.19)

The Green function is

Gi(r, z, t) =
1

π

( 1
√

(|z − di| + it)2 + r2
− 1

√

(|z + di| + it)2 + r2

)

, (2.20)

and fi is a solution of the integral equation

fi(r) +
∑

j

∫ Rj

−Rj

dxKij(r, x)fj(x) = gi(r) , (2.21)
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in which the kernel is given by

Kij(x, r) =
1

π

[ |di − dj |
(x − r)2 + |di − dj |2

− |di + dj |
(x − r)2 + |di + dj |2

]

, (2.22)

and gi(r) = βi − 2dir
2, where βi = ∆i + 2

3d3
i . The differences between this solution and

the one presented in section 2.1 arise from the presence of the infinite conducting plane

that, via the method of images, implies the presence of oppositely charged conducting disks

below the image plane. However, the conditions on the charges on the disks (2.11),(2.12),

still hold, so the requirement that the charge density vanishes at the edge of the disk is

that fi(Ri) = 0. We may again consider solutions to (2.21) in which gi(r) = δj
i , which

we will call f
(j)
i , and f

(0)
i for which gi(r) = 2dir

2. The condition that the charge density

vanishes at the edge of each disk is again (2.14), and fi will be given by (2.15).

As in the case of SYM on R×S2, the electrostatics problem has been reduced to a very

simple linear system. We will now show how we can solve this system to study instantons

at strong coupling on the field theory side using this method.

3. Instanton calculations

Recently, Lin [6] has considered tunnelling between vacua in the plane wave matrix model

and in maximally supersymmetric Yang-Mills on R × S2. It is possible to study this on

both the gauge theory and gravity sides. In the gauge theory case, this can be approached

by directly studying the instanton solutions [7]. Lin [6] has also shown that it is possible

to introduce a superpotential that gives a bound for the instanton action according to

Sinst = − 1

g2
∆W . (3.1)

Lin [6] further studied this on the gravity side. Explicit answers were given in the case that

the disks in the corresponding electrostatics problem were small and could be approximated

by point charges. Moreover, Lin [6] gave a prescription for how the instanton action could

be expressed in terms of the electrostatics potential in more general cases, but was not able

to give explicit expressions.

For completeness, we will briefly review Lin’s prescription for finding the instanton

action from the gravity side [6], and then we will demonstrate the use of the techniques

developed above to calculate the instanton action for some non-trivial electrostatics con-

figurations.

3.1 Instantons on the gravity side

Since Lin and Maldacena [2] have found electrostatics configurations corresponding to

SU(2|4) symmetric field theory vacua, it is interesting to understand how instantons in the

field theories can be described in the gravity picture. Lin [6] has studied this question by

first considering vacua in the field theories for which the electrostatics configurations do

not differ drastically. These instantons can be addressed by calculating the action for a

Euclidean D2-brane wrapping a non-contractible Σ3 in the geometry. As discussed in [2],

– 7 –
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Figure 2: The Young diagrams associated with the initial and final vacua in the plane wave matrix

model, and the electrostatics problems for the dual supergravity solutions.

since the brane will be wrapping a cycle carrying some N5 units of flux, it should have N5

D0-branes ending on it, and therefore describe the creation of N5 D0-branes in the throat,

see figure 2.

Using the mapping to an electrostatics configuration, the action for the Euclidean D2-

brane can be expressed in terms of the solution to the electrostatics problem. Consider

the case of a charged conducting disk at a position z0 above an infinite conducting plane,

as shown in figure 2. Lin [6] has shown that the action for such a configuration takes the

form

SE = − 2

π
[V (z0) − V (0) − z0V

′(0)] , (3.2)

where V is the electrostatics potential evaluated along r = 0, and prime denotes differ-

entiation with respect to z. This expression, however, is proportional to the change in

energy of the electrostatics configuration, SE = 8∆U/π3. This led Lin [6] to identify the

superpotential at strong coupling as

W ≡ −8g2

π3
U = −16g2

π3

∑

i

QiVi , (3.3)

where U is the energy of the electrostatics configuration.

In the case that the disks are small relative to their separation, which is at weak

coupling in the gauge theory, the superpotential is given by the energy of a system of point

charges. Using the prescription (3.3), Lin found [6]

W =
1

3

∑

i

N
(i)
2 N

(i)3
5 , (3.4)

in perfect agreement with the weak coupling gauge theory results [6, 7]. In the case that

the coupling is not weak, the charges arrange to form extended disks. We will find the

superpotential at strong coupling by solving the electrostatics problem for a set of extended

disks.
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3.2 Instantons in the PWMM

In this section we will consider instantons in the simplest non trivial electrostatics configu-

ration, that of a single conducting disk carrying π2N2/8 units of charge at a distance πN5/2

above a conducting plane. This corresponds to a field theory vacuum with N2 copies of the

N5 dimensional representation. We will determine the superpotential for arbitrary N2 and

N5, and calculate the action for Euclidean D2-brane wrapping the non-contractible Σ3.

In the case of small changes to the background mediated by the Euclidean D2-brane,

this will compute the action between a vacuum of the PWMM with N2 copies of the

N5 dimensional representation, and a vacuum with N2 − 1 copies of the N5 dimensional

representation and N5 copies of the trivial representation. See figure 2.

The electrostatics problem in this case can be approached using the technique outlined

in section 2.2 applied to the case of a single disk above the conducting plane. We consider

a disk of radius R, at a distance d from the plane, which is a generalization of the approach

in [5]. The solution to the electrostatics problem will be

V = V0

(

r2z − 2

3
z3 + φ

)

, (3.5)

where φ is

φ(r, z) =

∫ R

−R
dt G(r, z, t)f(t) , (3.6)

with Green function

G(r, z, t) =
1

π

(

1
√

(|z − d|2 + it)2 + r2)
− 1

√

(|z + d|2 + it)2 + r2)

)

. (3.7)

Here f satisfies the integral equation

f(r) +

∫ R

−R
dxK(r, x)f(x) = g(r) , (3.8)

with g(r) = β − 2dr2, β = ∆ + 2
3d3, and kernel

K(r, x) = − 1

π

2d

(x − r)2 + 4d2
. (3.9)

We will solve the problem by finding a numerical solution to the integral equation (3.8).

Solving this integral equation is straightforward. As a check on our numerical results,

we ensured that the asymptotic form for the superpotential in the limit that the number

of units of charge on the disks was small is given by (3.4). Indeed, we found that for

N5 À λ
1

3 À 1 1

W ≈ 1

3
N2N

3
5 + a

√
λN2N

3

2

5 , (3.10)

where the numerical constant a ≈ 1.4.

1Here λ ≡ g2N2, where g is the Yang-Mills coupling of the matrix model.
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Figure 3: The superpotential for N5 = 100. The dashed lines indicate the asymptotic values for

small and large λ compared to N5.

The solution of the electrostatics problem when the disks are large gives the super-

potential at strong coupling. A plot of the superpotential for N5 = 100 is given in fig-

ure 3. It is possible to extract the asymptotic form for the superpotential in the limit that

λ
1

4 À N5 À 1. We find the result

W ≈ b
√

λN2N
3

2

5 (1 − N
− 1

2

5 ) + cλ
1

4 N2N
2
5 (1 − N

− 3

4

5 ) , (3.11)

where the numerical constants b ≈ 1.4142 ≈
√

2, and c ≈ 0.7. In defining the superpoten-

tial, there was the freedom to choose an overall constant factor. Here we have defined the

superpotential to be zero for the vacua given by N2N5 copies of the trivial representation.

We can also use the electrostatics solution to determine the action according to (3.2)

for the instanton shown in figure 2. A plot of the result for N5 = 100 is shown in figure 4.

When λ is small compared to N5,

SE ≈ 1

3

N2N
3
5

λ
, (3.12)

and it falls off faster than any power of λ when λ is large. When λ is small compared to

N5, the potential on the disk in the electrostatics problem is negative, which is due to the

form of the background potential. As the size of the disk increases the potential on the disk

increases. The instanton action according to (3.2) begins to fall off from the behaviour at

weak coupling near where the potential on the disk crosses zero. It is sensible that it should

vanish when the coupling is infinite, since in that case we would expect the electric field

to become constant between the disks near the origin, and so the potential difference and

dipole contributions should cancel out. Let us briefly mention when these results should be

valid. The euclidean brane approximation will be valid when the number of units of charge

– 10 –
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Figure 4: The action for a euclidean D2-brane for the situation shown in figure 2. Here N5 = 100.

The dashed line shows the asymptotic behaviour for λ small compared to N5.

on the disk is large, the potential from the dipole at the origin is small at the surface of

the disk, and the curvature is small. Therefore λ, N2 and N5 must all be large.

It would be helpful to better understand the scaling behaviour that was found in (3.10)

and (3.11). We have taken the normalization of the superpotential thus far to allow for

direct comparison of vacua with N2 copies of the N5 dimensional representation to ones with

N2N5 copies of the trivial representation. The asymptotic behaviours we found in (3.10)

and (3.11) using this prescription have some interesting features. In particular, at a fixed

order in λ, we found that the coefficients for the subleading terms in N5 are one (i.e. the

factors of (1−N−α
5 ), where α is some positive number). The reason for this is as follows. If

we took the superpotential to be normalized to zero for the empty background instead, it

would have been advantageous to take out a further scaling factor of N3
5 ∼ d3 in (3.5). In

that case, the potential would be of the form V = V0N
3
5 V̄ (R/d). Likewise, the charge on

the disk would then have the form Q = V0N
4
5 q̄(R/d). Since the total charge is proportional

to N2, we must have that

Q ∼ N2 ∼ N4
5

g2
q̄(R/d) , (3.13)

or

q̄(R/d) ∼ g2N2

N4
5

=
λ

N4
5

. (3.14)

We see, then, that functions of R/d in the scaled electrostatics problem can only depend

on the combination of gauge theory parameters λ/N4
5 . Therefore the superpotential with

this alternative normalization must have the form

W̄ (λ,N2, N5) = N2N
3
5 w̄

(

λ

N4
5

)

. (3.15)
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Our numerical results confirm this. We find the following asymptotic behaviour for w̄:

w̄(x) ≈ 1

3

(

1 − 10

3
x

2

3

)

, x ¿ 1 , (3.16)

w̄(x) ≈ −
√

2x
1

2 + 0.7x
1

4 , x À 1 .

The superpotential with the original normalization is given in terms of W̄ by

W (λ,N2, N5) = W̄ (λ,N2, N5) − W̄ (λN5, N2N5, 1) . (3.17)

If we combine the contributions from the asymptotic behaviour of each of the terms in

this expression that come from the behaviour found in (3.16), then we will recover the

asymptotic behaviour that was found in (3.10) and (3.11). The factors of (1−N−α
5 ) occur

as a result of those combinations.

4. Discussion

In this paper we have given a prescription for finding the supergravity solutions dual to

general vacua of the plane wave matrix model and maximally supersymmetric Yang-Mills

on R×S2 by using the mapping of Lin and Maldacena [2] on to axisymmetric electrostatics

problems.

The prescription extends the technique developed in [5, 11] to arbitrary electrostatics

configurations. The electrostatics problems are reduced to a set of integral equations that

can be solved quite straightforwardly using the Nyström method.

We have shown that an application of the prescription to a specific case can be used

to study instantons at strong coupling in the plane wave matrix model. In particular we

found that the instanton action for a transition between a vacuum described by N2 copies

of the N5 dimensional representation and one by N2 − 1 copies of the N5 dimensional

representation and N5 copies of the trivial representation falls off faster than any power of

λ at strong coupling (see figure 4). We also found that at strong coupling the superpotential

for a vacuum with N2 copies of the N5 dimensional representation behaves like
√

2λN2N
3/2
5 ,

when N5 is large (see figure 3). This demonstrates that the techniques developed above

are useful for obtaining strong coupling results in the field theory.

One question that would be interesting to address using this method is to calculate

the superpotential explicitly for more general electrostatics configurations. For example,

studying the vacuum of maximally supersymmetric Yang-Mills theory on R × S2 in which

Φ = diag(n, . . . , n,−n, . . . ,−n), a similar scaling could be applied as was done for the

plane wave matrix model. In that case we would expect that the corrections to the weak

coupling results given by Lin [6] would depend on the parameter λ/n3. It would certainly

be interesting to study that case in detail, as well as other more general vacua.

One open question is to prove that requiring the charge density to vanish at the edge

of each disk implies that there is a unique solution to the electrostatics problem. The

condition for a unique solution to exist is given above by requiring det(f
(j)
i (Ri)) 6= 0. We

have not been able to prove that this is true in general. It would be interesting to do so.

Finally, it would be very interesting to use this method for finding the dual geometry

to study other strong coupling phenomena on the gauge theory side.
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